Machine learning methods for comparative and time-oriented Quality Estimation of Machine Translation output
نویسندگان
چکیده
This paper describes a set of experiments on two sub-tasks of Quality Estimation of Machine Translation (MT) output. Sentence-level ranking of alternative MT outputs is done with pairwise classifiers using Logistic Regression with blackbox features originating from PCFG Parsing, language models and various counts. Post-editing time prediction uses regression models, additionally fed with new elaborate features from the Statistical MT decoding process. These seem to be better indicators of post-editing time than blackbox features. Prior to training the models, feature scoring with ReliefF and Information Gain is used to choose feature sets of decent size and avoid computational complexity.
منابع مشابه
On the Translation Quality of Google Translate: With a Concentration on Adjectives
Translation, whose first traces date back at least to 3000 BC (Newmark, 1988), has always been considered time-consuming and labor-consuming. In view of this, experts have made numerous efforts to develop some mechanical systems which can reduce part of this time and labor. The advancement of computers in the second half of the twentieth century paved the ground for the invention of machine tra...
متن کاملتخمین اطمینان خروجی ترجمه ماشینی با استفاده از ویژگی های جدید ساختاری و محتوایی
Despite machine translation (MT) wide suc-cess over last years, this technology is still not able to exactly translate text so that except for some language pairs in certain domains, post editing its output may take longer time than human translation. Nevertheless by having an estimation of the output quality, users can manage imperfection of this tech-nology. It means we need to estimate the c...
متن کاملInvestigating the performance of machine learning-based methods in classroom reverberation time estimation using neural networks (Research Article)
Classrooms, as one of the most important educational environments, play a major role in the learning and academic progress of students. reverberation time, as one of the most important acoustic parameters inside rooms, has a significant effect on sound quality. The inefficiency of classical formulas such as Sabin, caused this article to examine the use of machine learning methods as an alternat...
متن کاملSelecting Feature Sets for Comparative and Time-Oriented Quality Estimation of Machine Translation Output
This paper describes a set of experiments on two sub-tasks of Quality Estimation of Machine Translation (MT) output. Sentence-level ranking of alternative MT outputs is done with pairwise classifiers using Logistic Regression with blackbox features originating from PCFG Parsing, language models and various counts. Post-editing time prediction uses regression models, additionally fed with new el...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013